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a, 

Ai, 

A, 
b, 
b*, 

B0 

c, 

=pc,R/p,c,,b, ratio of thermal storage 
capacity of the fluid to that of the solid; 
Airy function defined as shown in equa- 

tion (33); 
defined by equation (41); 
thickness of duct wall ; 
=p,c,,bRwJk ; 
defineh by equation (42); 

constant, = i(OS38)r 

I?\ 
co, 

cp cpw 

G, G, 

k, 
K 

constant, =0.538 I- i ; 
0 

specific heat of fluid and duct wall 
respectively ; 
defined by equations (20) and (19), 
respectively ; 
thermal conductivity of the fluid; 

modified Bessel function of the second 
kind ; 
integer ; 
local surface heat flux ; 
= -qwRX’,3/3 (0.538) r (2/3)kAT, non- 
dimensional local surface heat flux with 
AT = 8, for a step change of inlet 
temperature and AT =AT, for a sinu- 

soidal inlet temperature ; 
half thickness of duct ; 
Laplace transform parameter ; 
time ; 
local and initial temperatures, 
respectively ; 

u, 4% u,,,, local, mass average, and maximum 
velocity in duct, respectively; 

x, Y, space coordinates along duct and normal 
to wall, respectively ; 

2, defined by equation (16). 

R, 
s, 
4 
Tt Ti, 
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Abstract-A method is presented, namely the improved quasi-steady approach, which takes into 
approximate account both the effect of thermal history and of thermal energy storage capacity of a flowing 
fluid in transient, conjugated, forced convection problems and thus dispenses with two of the assumptions 
ordinarily implicit in the usual, simple quasi-steady approach to such problems. The development of the 
improved approach is suggested by a transformation of variable which leads to an exact solution for slug 
flows which is then generalized and asserted to be approximately valid for non-slug flows. 

Two analytical solutions using the proposed approach are presented and compared to finite difference 
solutions which were generated as benchmarks for the comparison. Additional comparisons are made to the 

usual, standard quasi-steady results. 

NOMENCLATURE Greek symbols 
= klpc, thermal diffusivity of fluid; 
Gamma function ; 
time increment ; 
amplitude of sinusoidal inlet temperature 
variation ; 
space increments along duct and per- 
pendicular to wall, respectively ; 
= T - Ti, temperature excess over initial 
temperature; 
refers to a constant wall temperature 
excess ; 
mass density of fluid and of wall, 
respectively; 
defined by equation (13); 
= axlR=u, non-dimensional distance 

along duct ; 
defined by equation (3); 
angular frequency ; 
= 0.538(3)1’31-(2/3)k/p,c,,bR. 

Subscripts and superscripts 

B, local bulk mean temperature of fluid; 

e, refers to inlet conditions; 

bJ, indices locating position of node in x and 
y, respectively; 

k, index specifying time; 

sqs, standard quasi-steady approach ; 
W, refers to conditions in the solid duct wall 

material. 

INTRODUCTION 

A KNOWLEDGE of the time varying surface temperature 
and heat flux for a solid, over which or through which a 
fluid flows, is important during the starting up and 
shutting down phases, or when a change in operating 
level occurs between different steady-state levels. In 
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addition, this knowledge is also needed for devices 
which may never attain steady-state operation because 
it is in their nature to operate periodically in time, 
Examples of physical equipment which experience 
these types of unsteady operating conditions include 
regenerative and recuperative heat exchangers, the 
blades and vanes of gas turbine power plants, and 
nuclear reactor fuel rods. 

In the most realistic analyses of solid surfaces 
interacting by convection with a fluid during a tran- 
sient, cognizance isgiven to the fact that the conditions 
at the solid-fluid interface are not known a priori, but 
rather what is known as a function of time is a 
boundary condition at some other surface of the solid, 
or generation within the solid, or perhaps an inlet fluid 
temperature. Problems of this type in which the 
temperature field in the moving fluid and the tempera- 
ture field in the bounding solid must be found 
simultaneously. because of the mutual coupling of the 
fields, are referred to as conjugate problems. Generally 
speaking, the complexity of a transient conjugated 
problem is such that often an approximate sohtion 
using the standard, simple quasi-steady approach is 
decided upon. Basically, this quasi-steady approach 
utilizes a steady-state surface coefficient of heat trans- 
fer which is a constant in both space and time or which 
exhibits the functional dependency on space coor- 
dinates which is valid for an isothermal surface. Thus, 
the standard quasi-steady approach does not account 
for the thermal history effect, that is, the surface 
temperature’s dependence upon position, or for the 
effect of thermal energy storage capacity of the flowing 
fluid. Representative of this type of approach to a 
transient conjugated problem is the analytical portion 
of the work in [l] by Adams and Gebhart. 

Because of the relative analytical simplicity it 
affords, the slug flow idealization has been employed in 
the solution to a number of transient conjugate 
problems. In [Z], Siegel and Perlmutter consider 
laminar slug flow in achannel with arbitrarily specified 
surface heat flux. Exact solutions are found and these 
are used by [3] in an energy balance on the wall to 
yield an exact solution to a slug flow conjugate 
problem where the transient is caused by various types 
of generation inside the wall material. Namatame [4] 
presents a modified quasi-steady solution for a slug 
flow transient conjugated problem in which the ther- 
mal history effect is taken into account. Sucec, as part 
of [5], uses a surface heat flux expression for arbitrary 
surface temperature in a modified quasi-steady so- 
lution of a slug flow conjugated problem in which the 
fluid inlet temperature varies with time. 

Soliman and Johnson [6, 71, find approximate 
solutions for the case of turbulent flow over a plate 
with thermal capacity when the plate generation is a 
step function or an exponential in time. First they find 
a solution for the instantaneous surface coefficient of 
heat transfer for the zero capacity plate when the 
convective terms in the thermal energy equations are 
neglected. Then the assumption is made that this time 

varying surface coefficient also applies to the finite 
capacity plate for f < X/M, and that the steady-state 
surface coefficient is the proper one for r > x/u,,. With 
this, the energy balance on the plate is solved for the 
time varying average surface temperature. Compar- 
isons with experimental data indicated much better 
agreement than yielded by the standard, simple quasi- 
steady results. In an approach bearing some similarity 
to the work of [6] and [7], Kawamura [8,9], employs 
an approximate expression for the eddy diffusivity of 
heat which allows an analytical solution of the trans- 
ient thermal energy equation with convective terms 
absent when the fluid interacts with a wall, of non-zero 
thermal capacity, which undergoes a step change in 
generation. The time varying surface coefficient of heat 
transfer thus found is then used in the thermal energy 
equation with the convective term present, until the 
surface coefficient drops to the steady state value after 
which the steady-state surface coefficient of heat 
transfer is used. Both these approaches, [6-91, repre- 
sent attempts to take into account the thermal ca- 
pacity of the fluid, something the standard quasi- 
steady approach does not do. 

Both Dorfman [IO], and Karvinen [I 1.12], describe 
a modified quasi-steady approach, for flow over a flat 
plate, in which thermal history is taken into approxi- 
mate account by use of surface heat flux expressions 
that are valid for steady-state conditions when the 
surface temperature distribution is an arbitrary func- 
tion of the space coordinate. Energy balances on the 
wall which incorporate these surface heat flux ex- 
pressions can then be solved for the unknown wall 
temperature distribution. 

The present work concerns itself with the deveiop- 
ment and application of an improved quasi-steady 
approach for transient conjugated forced convection 
problems which takes into approximate account both 
thermal history and the thermal capacity of the flowing 
fluid. This improved quasi-steady method has its 
origins in the slug flow problem and is, in fact, an exact 
solution to the slug flow problem which, after exten- 
sion and generalization, yields approximate ex- 
pressions for the surface heat flux in non-slug flows 
which act: unt for thermal history and fluid thermal 
capacity. The method is applied to two problems of 
flow in a parallel plate duct in which the finite thermal 
capacity walls and fluid are both at a constant 
temperature initially when a transient is initiated by 
either a step change in fluid inlet tem~rature with 
time, or a sinusoidal variation in time. For a Iinear 
velocity profile, exact solutions are found for the 
improved quasi-steady approach by application of 
Laplace transformations. Presented, for these two 
different inlet temperature variations, are the response 
functions for the wall temperature, wall heat flux and 
local bulk mean temperature of the fluid flowing in the 
duct. In order to test the validity of the improved 
quasi-steady approach, finite difference solutions were 
generated to serve as baseline solutions or bench- 
marks. The comparison of the finite difference results 
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with those of the improved quasi-steady analysis also 
serves to delineate the domain of applicability, with 
acceptable accuracy, of the improved quasi-steady 
approach. Finally, also for comparison purposes, some 
results for the standard quasi-steady method are 
presented. 

ANALYSIS 

Development of the improved quasi-steady approach 

Since, as mentioned earlier, the method proposed 
herein evolved from a solution to a slug flow problem, 
we begin by considering a fairly general slug flow 
problem, namely the steady, laminar, slug flow of a 
fluid in a parallel plate duct of height 2R with the fluid 
initially at a constant temperature when suddenly the 
temperature of the duct walls becomes an arbitrary 
function of position and time and the fluid inlet 
temperature begins varying arbitrarily with time. The 
problem, at this point, is to develop an expression for 
the local, instantaneous, surface heat flux. The mathe- 
matical description of the slug flow problem becomes 
as follows : 

x = 0, t > 0, 0 2 y < R 0 = O&t), 

(70 
t>O,x>O, y=R -=O 

C’Y 
and at y = 0 0 = 0,(.x, t). 

(2) 

One improvement to the standard, simple quasi- 
steady approach would be to solve the above set of 
equations with d@/& set equal to zero, yet retaining 
@,(x,t) at y = 0. The resultant expression for the 
surface heat flux now takes into account thermal 
history and is given by Sucec [5] for flow over a flat 
plate. In effect, this is also what Karvinen [ 111, and 
Dorfman [lo] do for the case of non-slug flow over a 
plate. However, in an effort to retain the dependence of 
flux on the fluid’s thermal capacity, it was decided to 
use the following transformation due to Schumann 
[13]: 

7 = t - x/u,. (3) 

Using this in a formal change of variables and 
leaving open the question of satisfaction of the initial 
condition on time, equations (1 f and (2) become, with 
0 = 0(x, y, t), 

FU , c% 
Urn>; = *p (4) 

x = 0, 0 < y 2 R 0 = 0,(r) 

all 7 
Zf) (5) 

x>O; Y=R, -=Oandat 
?Y 

I’ = 0, 0 = 0, (X, 7 + x,&J. 

The Laplace transformation with respect to x is 
employed to solve equations (4) and (5) which map 
into (6) and (7) with 0 defined as follows. 

II = L O(x,y,z) = 8e-” dx, 
X’S 

dB 
y= R dy =O, and at y =O, 8= B,,,(.s,‘c). (7) 

Upon solution of (6) subject to the conditions (7), one 
arrives at, 

The transformed surface heat flux q, can be found 
from (8) as 

The inverse L<place transform of the first factor in (9) 
is given in [14] and when this is used in the con- 
volution integral with the inverse of the factor in 
brackets, the following results: 

(_ ~)“e-[u,R*n2/dx-CIJ 

‘h(x - i’) 

Now since O,,,(x, r) one notes from (10) that z + S/u,,,, by 
its placement in the argument of at?,/a<, is acting like a 
dummy variable for time t. Since physically, we are 
considering only time t > 0, it follows that: 

%I 

or that, using (3) in (1 I) 

t; & x - u,t. (12) 

Since t, a dummy variable for x, must lie between 0 and 
x, it follows that equation (12) gives rise to two 
different time domains. if t > x/u, then (12) is 
automatically satisfied for all 5 between 0 and x, 
whereas if t < x/u, then 5 must begin at x - u,t to 
ensure that it will always be positive. 

Thus for t -=z x/u,, the lower limit of the integral in 
equation (10) must be x - UJ. It is convenient to use 
the following change in variable in equation (lo), when 
t -=c x/u,, to cause q, to be viewed as a function of z and 
t: 
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0 = t - x/u, + 5/u,. (13) 

With this, the solution for the surface heat flux in the 
original slug flow problem, equations (1) and (2) 

becomes as follows where the integrals are to be 
intrepeted as Stieltjes integrals : 

x 2(r, a) da, for t 5 x/u,, (14) 

x s(<, T) d& 
ag 

for t 2 x/u,. (15) 

The two different time domains that appear in 

equations (14) and (15) are the same ones as deduced 
for slug flows by Siegel and Perlmutter [2] on the basis 
of a Lagrangian viewpoint and physical reasoning. 

Depending upon whether t <x/u, or t > x/u, one is 
dealing with fluid downstream or upstream, respec- 
tively, of the front of fluid that was at x = 0 at t = 0. 

The condition at t = 0 in equation (2) which was 

not satisfied explicitly by the solution to (4) and (5), is 
satisfied implicitly by equation (14) because of the 
arguments which led to (14). This can be established 
rigorously by using the following transformation : 

z = x - UJ. (16) 

Viewing Q = Q(Z, y, t), equations (1) and (2) transform 

to the following : 

ati a20 
z=“ay2T 

c t=O; O<y<R; 0=0; 

(17) 

all Z 

I 
t > 0; 

a0 
y = R - = 0 and at 

(18) 
ay 

y = 0, f3 = O,(Z, t). 

If one solves equation (17) subject to conditions (18) 
which include the initial condition at t = 0, one is led 
quite directly to equation (14). Equations (14) and (15) 
are the surface heat flux manifestations of the complete 
exact solution and these two equations can now be 
used directly in an energy balance on a wall which 
bounds the fluid. The energy balance equation, when 
solved, gives the exact solution for the unknown wall 
temperature in a transient conjugated slug flow duct 

problem. 

Extension to non-slug jlows 

Now the most difficult transient conjugated prob- 
lems, which are also the ones of most interest from the 

practical viewpoint, are the ones involving a non-slug 
velocity profile and for fully developed, hydrodynami- 
cally, duct flow this means that u = u(y). In order to 
extend and generalize equations (14) and (15) to non- 

slug flows, equation (10) is examined. Consider steady- 
state conditions and an isothermal wall. Integrating 
equation (10) under these conditions where the in- 
tegration must be done in the Stieltjes sense one arrives 

at, 

q,,,(x) = G,(x)B,, (steady and isothermal conditions), 

(19) 

where G,(x) is the kernel of equation (10). Thus, the 

kernels of equations (14) and (15) G,[u,(r - a)] and 
G,Jx - t), have their form dictated by the solution for 

the steady-state flux on an isothermal surface, equa- 

tion (19). 
Next, it is asserted that equations (14) and (15) will 

hold approximately in non-slug flows if the kernels in 
the integrands come from the appropriate non-slug 
flow solution. Thus, if a solution or an experimental 
correlation is available, as many already are in Kays 
textbook [15], for the surface heat flux in steady, non- 
slug flow over an isothermal surface in the form 

q,(x) = G(x)u,,> (20) 

then equations (14) and (15) are written as follows: 

i 

* 

%v(7, t) = 
0 

G[u,(r - a)] %(7,c~)do, 

for t <.x/u,, (21) 

4,(x, 7) = 

I 

x 

0 

G(x - ;,f$"(;. 7)dt, 

for t > x/urn. (22) 

Equations (21) and (22) constitute the surface heat flux 
expressions to be used in the improved quasi-steady 
approach being advanced here. These expressions take 
into approximate account both thermal history and 
finite thermal capacity of the fluid and reduce to the 

exact expressions for slug flow when the G function is 
replaced by the G, for slug flow from equation (19). The 

generalized expressions (21) and (22) form a structure 
that unifies and displays the complementary aspects of 
previous work on modified quasi-steady approaches 

since the researchers in [6] and [IS] focused on the 
effect of fluid thermal energy capacity, while those of 

[41, [51, [lo], and I?11 concentrated on the effect of 

thermal history alone. 
The approximate nature of the equations (21) and 

(22) for non-slug flows is partially rooted in the fact 
that there are not only two time domains, as in slug 
flows, but one would probably define three time 
domains. The first time domain t < x/u,,,,~ is very 
similar to that in a slug flow since it consists of fluid 
that was already in the channel when the transient was 
initiated, that is, fluid which satisfies the initial con- 
dition. At some time greater than x/u,,,, essentially all 
of the fluid that satisfied the initial condition has 
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already been transported past the x of interest and 

hence one is considering fluid that satisfies the inlet 
boundary condition and the state is reasonably similar 
to that of the second time domain t > x/u, of a slug 

flow. However, in the non-slug flow with u = u(Y) 
there is a third or intermediate time domain in which 
the slower moving fluid near the wall, which satisfies 
the initial condition, is communicating by thermal 

conduction with the faster moving fluid above it at the 
same x, fluid that satisfies the inlet boundary con- 
dition. The duration of this intermediate time regime 
compared with the length of the first and second time 

domains will have an effect on the accuracy of the 
improved quasi-steady method in non-slug flow prob- 

lems. One can obtain some qualitative information 
about this complication by looking at the thermal 
energy equation, for a fully developed non-slug ve- 

locity profile, using as independent variables x, Y, and 
r, which has the form 

[ 1 1_u(y) i’H+u(Y)!!&E. 
u, dt 3Y2 

(23) 

The improved quasi-steady analysis assumes that the 

first term on the left side of equation (23) is essentially 
zero. Obviously, in the case of slug flow where u( y) = 
u, this is rigorously true. Even in a non-slug flow case 

this may be essentially true if de/&, or [ 1 - u( y)/u,], 
or their product, is small. The factor [ 1 - u( y)/u,,,] will 
be small for relatively ‘square’ non-slug velocity pro- 
files and is seen to take on its largest values near the 
wall which, of course, is the region where it takes 
longest to sweep away the fluid which satisfies the 
initial condition. Some evidence for the adequacy of a 
two time domain approach when the non-slug velocity 
profile is ‘square’ enough is implicit in [6], where an 
external turbulent flow was considered, and also in 
[16] where laminar flow inside ducts is considered. 

Thus, it was decided to use as the approximate signal 
time, or lag time, which separates the two time 
domains in the improved quasi-steady model, the same 
quantity that is appropriate for a slug flow, namely 

xl%. 

Application of the improved quasi-steady model 

To test the validity of, and learn more about, the 

proposed approximate model, it was applied to two 
problems. Considered was steady, laminar, constant 
property, fully developed hydrodynamically, flow in a 

parallel plate duct of height 2R with walls, of thickness 
b, which are perfectly insulated on their outside 
surfaces when both the walls and the fluid are orig- 
inally at a constant temperature. In the first case 

considered, a transient was initiated in the flowing 
fluid and the walls by a step change in the fluid inlet 
temperature while in the second case the unsteadiness 
is caused by a fluid inlet temperature that varies 
sinusoidally with time for all r > 0. The problem is to 
predict the surface temperature and heat flux as well as 
the bulk mean temperature of the fluid as functions of x 
and I. 

An energy balance is made on a control volume of 

the duct wall b by dx, assuming that the wall tempera- 
ture can be lumped in the Y direction, that axial 
conduction in the wall is negligibly small, and that the 

thermal properties of the wall are constant. and yields 
the following. 

(24) 

The improved quasi-steady expressions for the surface 

heat flux, q,,, are given by equations (21) and (22) 
where the function G(.x) must now be chosen. At this 
point, for a combination of reasons, a linear in Y 
velocity profile was chosen. Firstly, it provides analyti- 

cal convenience in allowing an exact solution with the 
G(x) function given implicitly in the results of Lighthill 
[ 171. (The correct, but more complicated, G(x) for the 
actual quadratic velocity profile is available in [ 151). 
Secondly, the linear velocity profile is thought to 
provide the most severe test of the improved quasi- 
steady procedure since it is farther away from the slug 

profile than is the more ‘square’ actual quadratic 
velocity profile in the duct and one of the primary 

reasons for these solutions is to test the accuracy of the 
model. Also, as is well known, the linear velocity 

profile is an adequate representation of the actual 
velocity profile in a thin thermal boundary layer. Thus, 
with the use of the wall shear stress and mass average 
velocity u, appropriate to the actual quadratic, fully 
developed laminar duct flow, the linear velocity profile 

becomes 

U(Y) = 3&i. (25) 

Lighthill’s result for the steady state flux in [ 171 is an 

exact solution for a linear velocity profile and is 
applicable here, certainly in the thermal entrance 

region. Hence, in terms of the non-dimensional dis- 
tance x = ux/u,R2, we have that, 

k 1 
G(x) = 0.538(3)“3 ~ -,? 

R j(’ 
(26) 

With 0, = T, - Ti and therefore 8, =0 at t = 0, it is 

seen by inserting equation (21) into (24) that the 
solution in the first time domain, t < x/u,, is 0 = 0. 
Insertion of (26) into (22) and this result used in (24) 

gives the equation to be solved for the surface tempera- 
ture distribution in the second time domain as, after 
noting that ?0J?t = ?tl,/?r, 

w + 0.538(j)“3k do x 1 

(7r pwc,wbR J 0 (x - w3 

x 2 [I[, 71 dt = 0 for 7 2 0. (27) 

Solution for step change in inlet temperature 

The solution to equation (27) for 0, must satisfy the 

following two side conditions, 
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T = 0, X > 0, 8, =o, Changing the variables 
and x = 0, T > 0, 0, = 0,. (28) solving for es yields 

Taking the Laplace transform of equation (27) with 
respect to x yields, 

dtT, 
,+$sB,-8,)=0, 

7 = 0, rr, = 0. (30) 

Solution of (29) subject to (30) yields the transformed 
function as 

(31) 

The procedure for finding the inverse transform of (31) 
is given in Appendix A and yields the following. 

du. (32) 

One check that can be made on the operations that 

led to (32) consists of seeing if (32) does yield 0, = 0 at 
T = 0. Setting T = 0 in (32) leads to an infinite integral 

available in analytical form in Luke [18] and its value 
causes the initial condition to be satisfied. However, 
for values of T other than zero, it was found that 
equation (32) was more easily worked with when it was 
recast in a form in which the Airy function, Ai 
appeared. From [19], one has that 

Ai = f &3(;z3~zJ. (33) 

Using this yields the following solution for the wall 
temperature distribution by the improved quasi- 

steady approach. 

0 
w = 0 for t <x/u, 
0, 

x Ai(z)dz, for 7 2 0. (34) 

Now the non-dimensional surface heat flux can be 
found from (24) after changing the variable to T and 

rearranging to give 

x Ai(z)dz, for 7 2 0, (35) 

with Q, being zero for t < x/u,. 
In order to arrive at the bulk mean temperature 

excess es of the fluid, one makes an energy balance on a 
control volume dx long by R high which gives 

q, = pu,c,R 2 + pc,R 3. 
dt 

(36) 

to x and 7 in (36) and then 

R x 
- j q,@>t)W 
k@, o 

(37) 

If one obtains q, from (35) and inserts it into (37) the 
result contains an inner integral whose lower limit 
depends upon the integration variable of the outer 
integral. However, if one then integrates by parts three 
times the resulting equation contains only integrals of 
the same general form as already present in (34) and 
gives Bs as follows: 

for T 2 0, 

(38) 

and 

OS = 0 for t < x/u,. 

Sinusoidal inlet temperature variation 

Considered next is a problem similar to the one in 
the previous section except that now the transient is 
initiated by a fluid temperature that varies sinusoidally 
at the inlet. In this case there is never a steady-state 
since, after the transient portion of the unsteadiness 

decays, one is left with the ultimate periodic unsteady- 
state. 

Once again the fluid and the duct walls are at 
constant initial temperature excess Oi = 0 when the 

inlet fluid temperature excess, at t = 0, begins varying 
with time as ee = AT, sin wt. 

Application of the improved quasi-steady approach 
to this problem leads to equation (27) which, after 
application of the Laplace transform, gives the tem- 
perature excess in the transformed plane as 

e-&.,’ Jr 

To effect the inversion back to the physical plane the 
same overall procedure was used as given earlier for 

equation (31). Thus, one gets: 

t’Jb*x113, ~7) J(3)I-(l)I-(2/3)32,3c; 2 

ATo 2z(b*$f3)’ 

x j: zAi(z)cos($)dz] 

x sin w7 - 
33~zI-(1)I-(4/3)3”3co 

2,&*Xl:3 



Improved quasi-steady approach 1717 

z Ai 

x sinfF)dz]cosoi 

3% 
+b*x1’3 

x z Ai dz, for 7 h 0, and 

%,/AT, = 0 for t < x/u,. (40) 

The first two terms of (40) represent the eventual 
periodic unsteady response while the last term is the 
transient portion of the response. After defining A,(X) 
and B,(X), equations (40) (24) and (37), with AT, 
replacing Be, give the flux and bulk mean temperature 
as follows : 

A,(X) = coefficient of sin ~7 

in equation (40), 

B,(X) = coefficient of cos w7 

in equation (40), 

(41) 

(42) 

Q,(b*Xl ,3, wT) = ‘*~~~~) sin w7 + b*x~%adx) 
0 0 

x z Ai dz, for T h 0, and 

Q, = 0 for t < x/u,, (43) 

fl,(b*X”3, 07) - sinor 6~: cu 

AT, =b*2 o [s 
Ai 

x z Ai dz d/I, for 7 ?Z 0, and 

Bs = 0 for t <x/u, WI 

Standard quasi-steady approach 

For comparison purposes, the same problems will 
also be solved by the commonly employed standard 
quasi-steady model which normally uses the heat 
transfer coefficient for steady state flow over an 
isothermal surface. This is given by equation (26) for 
the cases considered here. Using this in (24) gives the 
wall temperature and flux as follows for step and 
sinusoidal inlet temperature variations, respectively : 

8. -!&L = 1 _ e- l.O651/[$,r/(3r)’ ‘]+0.72851 a~“‘} 
%,, 

(45) 

1.0651 
Qwqjx, 7) = 3 [ 1 0, _A 1 0,. ’ (46) 

0. 
-LL = 
ATo 

sin (OT + wx/u,) + 1.2888 b*x1j3 

r 
X 1 - cos (w7 + w x/u,) + 

e-0.7759((~ur/h*~"')+ [(wx/u,)/h*~' '1) 

+ 
1 + 1.6609 b*2x2’3 II ’ 

Q,?,\ = 0.45756 b*x1’3 cos (~7 + w x/u,) 

+ 1.2888 b*x” sin (07 + ox/u,) 

(47) 

e-0.7759~lax/h*~' 'I+ [(w+.)/h*x' '1) 

1 + 1.6609 b*2x2!3 ’ 
(48) 

Finite diffi?rence equations 

To ascertain the accuracy and the limitations of the 
improved quasi-steady approach, it was decided to 
compare it to the true solution of the problem as 
represented by a finite difference solution to the 
governing partial differential equations (23) and (24) 
with the velocity profile given by (25). Energy balances 
on nodal volumes, equivalent to use of the standard 
central difference approximation for the conduction 
term and an ‘upwind’ scheme for the convective term, 
gave the implicit finite difference algorithms below : 

forj= 1: (AR + 1) &;’ - ARc$;,; ’ = &, 

2<j<N-1: -AFc#I~,~?,+(~AF+Ac+~)c#$~’ 

- AF&‘j=‘, = 4f.j + Ac&‘:.j, (49) 

j = N: -2AF&+,‘, + (2AF + AC + l)&;’ 

Ac=aj&T AF=a-$, AR=iAFAY. 

By use of the usual Taylor series expansions, it was 
verified that the finite difference equations (49) are 
compatible with the governing partial differential 
equations with truncation error = O(Ax) + O(Ay) + 
O(At). 

A stability analysis demonstrated the unconditional 
stability of the equations (49). While solving (49). the 
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finite increments, AX, A_v, and At, were reduced to the 

point where the solution became independent of 
increment size. 

The structure of the equation (23) dictates a march- 
ing type of solution. in both x and t. for the equations 
(49). To begin the solution one starts at t = 1 AI and at 
.Y = I Ax with the initial condition (t = 0) and the inlet 

boundary condition supplying the information needed 
to cause (49) to be a set of N simultaneous algebraic 
equations which are then solved for the nodal tempera- 

tures at x = 1 AX and t = 1 At. With these one can 
proceed to Y = 2A.u and solve the simultaneous 

equations again, still at f = 1 hr. This is continued 
until the x of interest is reached. The entire process is 
repeated at I = 2Ar, etc., until the time of interest or 

the steady-state, if there is one, is reached. 

RESULTS AND DISCUSSION 

The improved quasi-steady approach response func- 
tions for the step change in inlet temperature, (34), 
(35) and (38) and for the sinusoidal inlet fluid tempera- 

ture variation, (40). (43) and (44). contain various 
integrals of the Airy function which were computed 
numerically with the Airy function values taken from 
[19]. With this, the values of the response functions of 
the improved quasi-steady model for the step change 
in inlet temperature were evaluated and are given as 

the solid curves in Figs. 1-4. Examination of (34) and 
(35) indicates dependence of the wall temperature 
excess ratio and the non-dimensional surface flux on a 
single variable. #o~~(3~f’ 3, which combines the ): and 5 
dependence. To test the accuracy of the method, the 
finite difference solution to the same problem was run. 
The finite difference equations and solutions exhibit a 
dependence of the wall temperature and flux on 
cbor/(3x)“3 and a separate dependence on x and on n = 
~c~~~p~c~~b which is the ratio of the thermal capacity 
of the fluid to that of the wall, both on a per unit length 
in Y basis. So, finite difference solutions were carried 
out for a range of values of a. Figure 1 shows the results 
for a = 0.1 with the various symbols representing the 
correct solution, the finite difference solution, at 

various values of x chosen for convenience of the finite 
difference solution. As is evident from the figure, the 
improved quasi-steady result exhibits excellent agree- 
ment with the finite difference result for a = 0.1 over 
the range of x which more than spans the thermal 
entrance region. Also presented in the same figure, as 
dashed lines, are the predicted responses using the 
standard quasi-steady approach, equations (45) and 
(46). As can be seen from these equations, there is a 
separate dependence upon the group ax2,3. However, 
for u = 0.1, the curves for the smallest and largest value 
of x used are nearly coincident so that only the one for 
the lowest value of x was plotted and this curve is very 
close to the curve for x = Owhen a = 0.1. Examination 
of Fig. 1 indicates that the standard quasi-steady 
approach does not do too well, even at this relatively 
low value of u, in predicting the correct responses given 
by the finite difference solution. 

Now, at a = 0.1 the thermal capacity of the wall 
material is dominant and that of the fluid is much less 
important. However, as a increases, the fluid’s thermal 
capacity becomes a more and more significant factor 
controlling the response functions and since the im- 
proved quasi-steady approach takes finite fluid ther- 
mal capacity into approximate account for non-slug 
flows, one expects increasing deviation between the 
proposed method and the finite difference results for 
the larger values of a. This can be seen by reference to 
Fig. 2, a = 0.5, and Fig. 3 for which a = 1.0. In Fig. 2, 
the agreement between the proposed method (solid 
lines) and the finite difference result, while not as 
satisfying as that of Fig. 1, is still considered quite 
good. Showing up in this figure is the rise, in the finite 
difference predictions, of the heat flux from zero at 
values of f#~,2/(3~)‘!~ near zero. The actual heat flux. 
especially at the larger values of x, is lower and the wall 
temperature at the highest x is larger than those 
calculated by the improved quasi-steady approach at 
small values of &~/(3~)‘~~. This is caused by the fact 
that, with the actual linear velocity profile, the wall is 
preheated by Ruid layers moving faster than u,,, since 
these layers arrive at any x before fluid moving at u, 

FIG. 1. Wall temperature and heat flux responses for a step change in inlet temperature. 

Standard Quasi-Steady - - - 
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Finite Difference 

0.00259375 

Improved Quasi-Steady - 

FIG. 2. Wall temperature and heat flux responses for a step change in inlet temperature. 

and communicate thermally with the wall by y con- 
duction. This raises the wall temperature slightly, in 
advance oft = x/u,, for the largest values of 1, which, it 
is felt, is at least part of the reason for the lower actual 
flux. Essentially, this is part of the intermediate time 
domain, referred to earlier, in which fluid that satisfies 
the initial condition is communicating with fluid that 
satisfies the inlet condition. In Fig. 3, for which a = 1.0, 
the trends, first seen in Fig. 2, are even more apparent. 
The agreement displayed between the improved quasi- 
steady predictions and those of the finite difference 
method is considered satisfactory. Tentatively, it is 
suggested that a = I .O be considered as the upper limit 
of the improved quasi-steady approach in terms of 
acceptable engineering accuracy. Additional evidence 
for this domain of validity conclusion is available from 
finite difference results at a = 0.75, 1.5, and 4.5, not 
presented herein. 

Also shown in Fig. 3 via dashed lines, for the two 
extreme values of x, are the standard, simple, quasi- 
steady solutions, (45) and (46). The overall agreement 
between these solutions and the finite difference results 
is not very good especially at the higher value of x. In 

Fig. 1, the error in the standard quasi-steady solution 
was due almost exclusively to thermal history effects, 
since the group containing a~*‘~ in equations (45) and 
(46) is virtually zero, while the additional shift upward 
of the dashed curve for x = 0.166 in Fig. 3 is due to the 
larger values of ax”3 which represents an incorrect 
dependence upon finite fluid thermal capacity. 

Figure 4 compares the bulk mean temperature 
predictions of the present method, equation (38), for 
the step change in inlet temperature, to those of the 
finite difference method. The agreement is very good 
except at low values of 4,~/(3~)‘~~ for the higher x 
where the finite difference results are higher for 0, 
because of the lower surface flux as explained earlier. 

On the basis of the first four figures, it is seen that the 
improved quasi-steady approach, which attempts to 
take into account both thermal history and fluid 
thermal capacity effects, predicts the finite difference 
results reasonably well and does significantly better 
than the standard quasi-steady approach. Yet the 
improved quasi-steady approach, though more 
difficult to apply than is the standard quasi-steady 
solution, is a considerably easier approach than is the 

0.40 T 

0.30 
1 
t 

0. I 0 

0 i 

0.8 

yU0.6 

ok 0.4 

0.2 

Finite Difference 

0 00259375 

Improved Quasi - Stsady- 

Standard Quasi-Steody------ 

FIG. 3. Wall temperature and heat flux responses for a step change in inlet temperature. 
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severe test for the improved quasi-steady approach. 

JAMES SUCEC 

0.8 
v 

Finite Difference Results 
X 

Looking at Fig. 5, one sees that the improved quasi- 
steady results for the surface temperature and heat flux 
are in very good agreement with the finite difference 
results in both the transient start-up and the ultimate 
periodic state for the parameter values that were 

selected. The standard quasi-steady approach, how- 
ever, differs significantly from the finite difference 
result. Since the periodic state has been reached within 
the first cycle, all cycles beyond the second are the same 

as the second. Figure 6 displays the results for the bulk 
mean temperature in the eventual periodic unsteady 

state. 

FIG. 4. Fluid bulk mean temperature response for a step 
change in inlet temperature. 

finite difference solution to the problem. Once the 

finite difference equations were derived and pro- 

grammed properly for the computer, some individual 
runs, for one value of a and two of the largest x values, 

required 2000 s or 34 CRU for the step change in inlet 
temperature. By way of contrast, the computer pro- 
gram which evaluates the improved quasi-steady 
response functions (34), (35) and (38) required only a 
total time of 10s or 1 CRU to complete all of the 
calculations. 

Sinusoidal inlet temperature oariation 

For this inlet temperature some representative 
results for the wall temperature. surface heat flux, and 
bulk mean temperature are given in Figs. 5 and 6. The 
one value of b x * ‘,3 for which finite difference results 

are presented here was chosen to provide the most 

CONCLUDING REMARKS 

An improved quasi-steady approach, which takes 

into approximate account both thermal history and 
thermal capacity of the fluid, is developed for transient, 
conjugated forced convection problems. Using this 
approach, two analytical solutions are found, for a 
linear velocity profile, to transient conjugated prob- 
lems in the thermal entrance region of a duct and the 

predicted wall temperature, surface heat flux, and local 
bulk mean temperature of the fluid are compared to 

finite difference solutions and to standard quasi-steady 
solutions to the same problems. Agreement of the 
proposed improved quasi-steady approach with the 
finite difference solution is highly satisfactory for a 

reasonably wide range of the parameter, a, which is the 
ratio of the thermal capacity of the fluid to that of the 

solid wall, while the standard quasi-steady approach 
leads to substantial error. 

It is also seen that the method developed herein, 
which is an exact solution for transient slug flows and 
in the limit of the steady-state is also an exact solution 

for non-slug flows, is easier to deal with and more 
economical to use than is a finite difference solution to 

the problem. Often a needed kernel, which is related to 

Finite Difference Results 
B &=I.0 

Improved Quasi-Steady 

Standard Quasi-Steady --_---- 

FIG. 5. Wall temperature and heat flux responses for an inlet temperature varying sinusoidally with time 
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the steady-state flux for flow over the same surface 
when isothermal, is already available from solution or 
experiment. 
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APPENDIX A 

Inversion ofeqaation (31) 

Needed is 4:: (i,-+,I%). (A.1) 

Viewing the bracketed term in (A.l) as being a function of 
s1j3, we attempt to make use of the following result from [14]. 

= L-’ ll[w(s,] = 
s 

r(n. x)f (a) da, (A.2) 
“I. 0 

where 

f(u) = L-’ y[w] and r(u,X) = L-’ e-yw(3! 
w-is s-x 

Identifying w(s) as s’13 in (A.1) gives 
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(A.3) 

Using the translation theorem and a transform table [ 141 on 
(A.3) yields 

f(u) = 0 for u < $Or, and q for u > #0~. (A.4) 

Rearranging, using a substitution property and tables of 
inverses in [14] gives, 

L-I e-U”,a = L- 1 e- 3~1A/27)” = 27 
F$ 

i 1 
s-x S-X u3 ’ 

where K is a modified Bessel function of the second kind. 
With this, one has 

r(u, x) = (A.5) 

Using (AS) and (A.4) in (A.2) yields the inverse needed in 
(A.l) as the second term in equation (32). 

UNE APPROCHE QUASI-PERMANENTE AMELIOREE DES PROBLEMES VARIABLES DE 
CONVECTION FORCEE AVEC COUPLAGE 

R&me-On prCsente une mCthode, dite approche quasi-permanente am6lior&z, qui tient compte ti la fois de 
l’effet de I’histoire thermique et du stockage de l’tnergie thermique d’un fluide en tcoulement pour des 
problemes de convection avec couplage, et qui s’applique avec deux des hypothtses, ordinairement implicite, 
dans l’approche usuelle, simple, quasi-permanente, des problhmes de ce genre. Le dkveloppement de la 
mkthode est faciliti par une transformation de variable qui coriduit $ une solution exacte pour les 
tcoulements-pistons et qui est gknbaliie (et approximativement valable) pour les Ccoulements B profil 
varil. 

On pr&ente deux solutions analytiques obtenues par cette methode et on les compare aux solutions par 
dil%rences finies. Des comparaisons additionnelles sont faites avec les rbsultats classiques quasi-permanents. 

EINE ERWEITERTE METHODE ZUR QUASI-STATIONAREN BEHANDLUNG VON 
INSTATIONAREN KONJUGIERTEN PROBLEMEN DER ERZWUNGENEN KONVEKTION 

Zusammenfassung-Es wird eine Methode der erweiterten quasi-stationlren Behandlung besechrieben, die 
bei instationlren konjugierten Problemen der erzwungenen konvektion sowohl den EinfluB der therm&hen 
Vorgeschichte wie such die thermische Energiespeichertihigkeit eines striimenden Fluids nlherungsweise 
beritcksichtigt und damit auf zwei der Annahmen verzichtet, die gewiihnlich hei der iiblichen einfachen 
quasi-stationlren Behandlung solcher Probleme gemacht werden. Zur Erweiterung der Methode wird eine 
Variablentransformation vorgeschlagen, die zu einer exakten LGsung fiir PfropfenstrGmungen fiihrt. Diese 
wird dann verallgemeinert und damit such nlherungsweise fiir Nicht-PfropfenstrGmungen giiltig. Zwei 
analytische LGsungen, bei denen die vorgeschlagene Methode benutzt wurde, werden angegeben und mit 
numerischen LGsungen verglichen, die als Vergleichsgrundlage erstellt wurden. Zus%tzliche Vergleiche 

wurden mit Ergebnissen der iiblichen einfachen quasi-stationlren Methode durchgefiihrt. 

YCOBEPIlIEHCTBOBAHHbIfi KBA3kiCTALIHOHAPHbIfi MET00 AHAJIkl3A 
HECTAUWOHAPHMX COHPRxEHHbIX 3AJJAq BbIHYXAEHHOn KOHBEKUMII 

AttHoTauHn - npeLIJIOX(eH yCOBepmeHCTBOBaHHbIti KBa3EiCTaLIIiOHapHbIfi MeTO& y9HTbIBaFOmn8 KaK 
BJIWRHBe IIpenHCTOpIirt nOTOKa ,KKI(AKOCTH, TaK A er0 TenJIOBOir 3HeprAlr B HeCTauHOHapHbIX COnpa- 
TeHHbIX 3afla’IaX BbIHymfleHHOti KOHBeKI,IIA, ST0 n03BOnlleT He npIi6eraTb K AC”O,Ib30BaHHK) nByX 
nOnyIQeHIii& XapaKTepHbIX aJIll 06bI’lHOrO npOCTOr0 KBa3HCTaIIl(OHapHOrO MeTOAa peIIIeH&Ia TaKIiX 
3aLIa’I. YCOBepILIeHCTBOBaHHbIk MeTOLl OCHOBaH Ha npeO6pa30BaHmi XpCMCHHOi? ki n03BOJIlCT IIOJIY- 

‘IATb TO’IHOe peIIleHIie LIJIll CTepgHeBbIX peXGIMOB TW’ZHRR. KOTOPOC MO*HO 0606utHTb C nOCTaTO9HOfi 
cTeneHbto ~o~~oc~n R Ha npyrae pexnMbI Teqemm. 

npe&!IOEeHHbIM MeTOnOM “0,IyYeHO L(Ba aHa,INTHYeCKAX ~“,eHHfi W naH0 C,,aBHeHZXe CO C”euHa,IbHO 
BbInO.“HeHHbIMB peIIIeH”IMH MeTOnOM KOHe’(HbIX pa3HOCT&. KpoMe TOTO, npOBCLWH0 COnOCTaBneHHe 

C 06bI’IHbIMW CTaHLIapTHbIMH KBa3UCTauAOHapHbIMB pC3y,IbTaTaMH. 


